The Role of Pavement in Reducing Greenhouse Gas Emissions

John Harvey

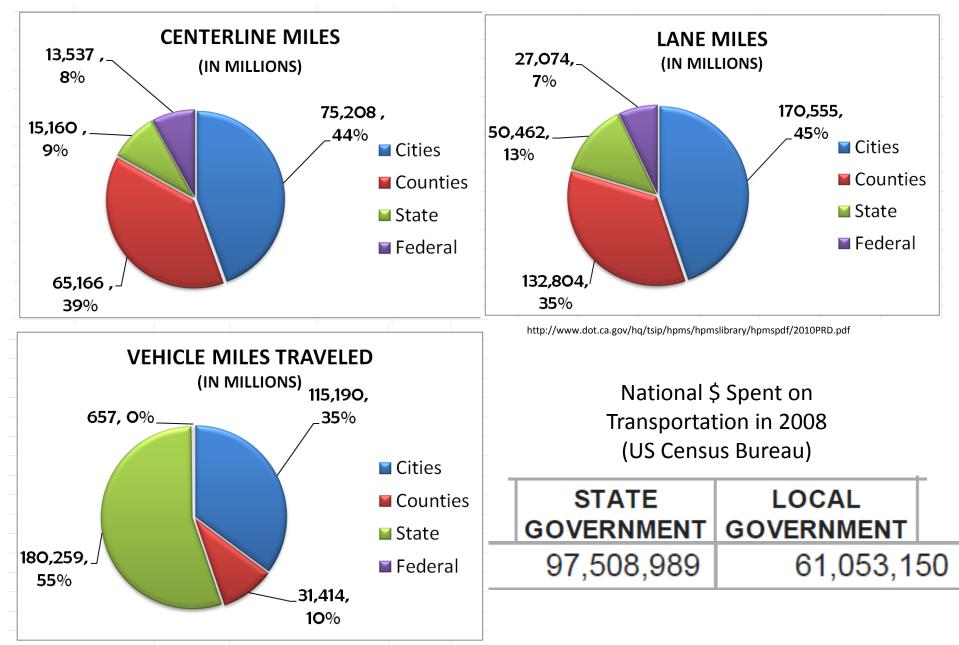
University of California Pavement Research Center

Briefing for California State Government Agencies

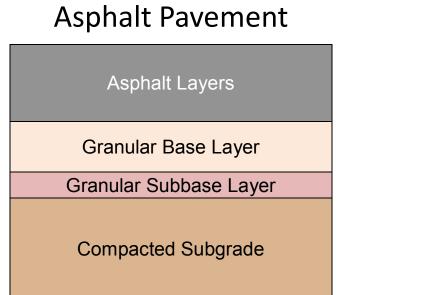
from the

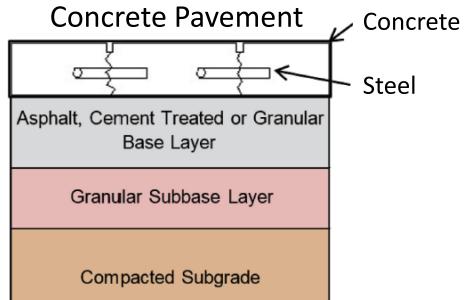
National Center for Sustainable Transportation

6 April 2016


Why care about pavements?

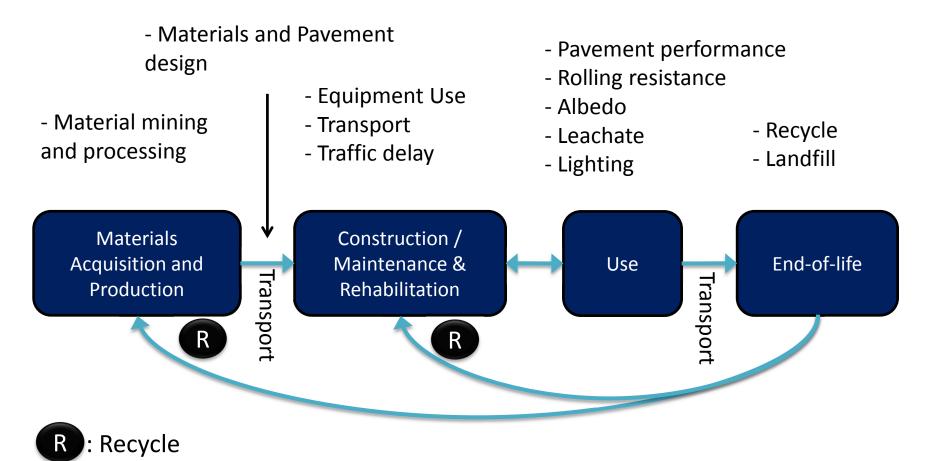
- We depend on pavement for most of our modern human activities
 - Societal benefits
 - Movement of freight and commodities
 - Economic competitiveness
 - Regardless of propulsion method (petroleum, electric, etc)
 - Active transportation
 - Rail


Why care about pavements?


- They cost a lot of money
 - Based on 2008 data, the total expenditures for highways in the U.S. was \$182.1 billion (FHWA Highway Statistics 2010)
 - Most expensive asset for most local governments
 - 95% of cost in California: maintenance, rehabilitation and reconstruction (M&R)
 - There is an optimal time and treatment for M&R for each segment of the network, which overall requires:
 - Funding to catch up on backlog
 - Steady funding to preserve network
 - Asset management (pavement management system) to predict what, when, where, how much

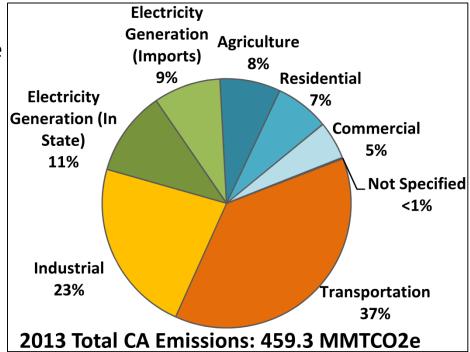
Who owns and operates California pavements?

What are Pavements Made Of?


- Mostly sand, gravel, crushed stone
- Some asphalt and/or cement to hold rocks together
- Asphalt and cement are 5 to 30 percent by volume of top layers, but have most of cost and environmental impact

What Does M&R Involve?

- Treatments for functional problems and seal surface
 - Seals and thin overlays on asphalt pavements
 - Make the surface smoother and/or restore skid resistance
 - Overlays and seal coats on asphalt
 - Grinding and slab replacements on concrete
- Treatments for structural problems (cracks, broken pavement)
 - Overlays
 - In-place recycling of asphalt
 - Total or partial reconstruction where underlying pavement is badly damaged


Where can environmental impacts be reduced?

- Use Life Cycle Assessment (LCA) to find out
- Use Life Cycle Cost Analysis (LCCA) to prioritize based on improvement per \$ spent

How do Pavements Contribute to GHG Emissions?

- Out of 459 MMT CO2e
 - On road vehicles 155 MMT
 - Pavement roughness and other effects can change vehicle fuel use by about 0 to 4 %
 - Refineries 29 MMT
 - Paving asphalt about 1 % of refinery production
 - Cement plants 7 MMT
 - Paving cement about 5 % of cement plant production
 - Commercial gas use 13 MMT
 - Very small amounts for asphalt mixing plants
 - Mining 0.2 MMT
 - Large portion for aggregate mining

http://www.arb.ca.gov/cc/inventory/data/data.htm

What is most important?

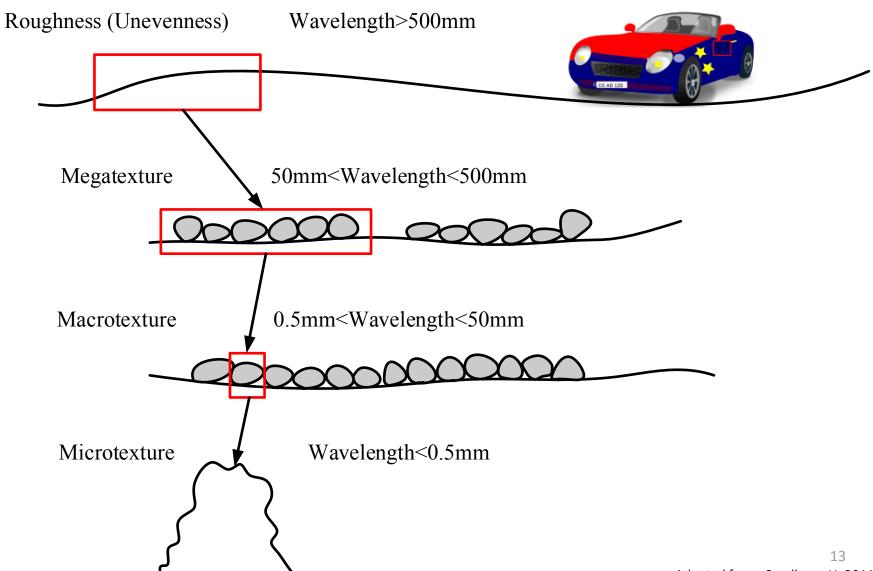
• For highest traffic segments:

On road vehicles and pavement/vehicle interaction most important

- On lower traffic segments:
 - Materials (mostly) and construction most important

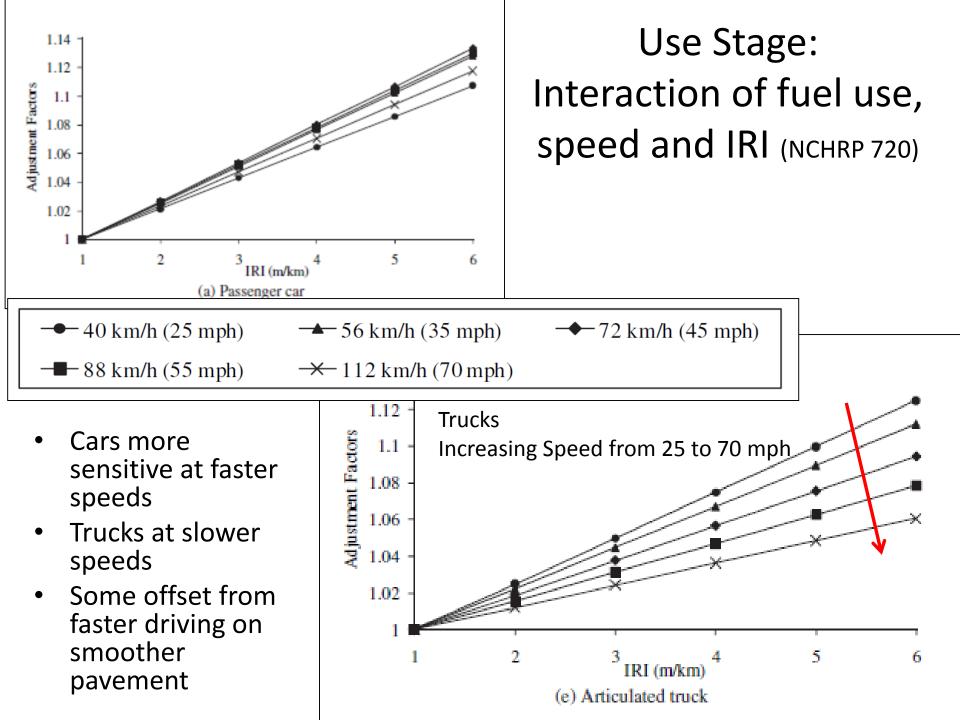
Strategies to Improve Sustainability of Asphalt Pavement Materials & Construction

- Improve durability with construction compaction specifications
 - 1% change in air-voids = about 10% change in cracking life
 - Warm mix
 - Strict compaction requirements
 - Caltrans has reduced typical air-voids from about 11% to 7% since mid-90s
- Use reclaimed asphalt pavement (RAP), and tire rubber
 - Caltrans more than 30% of asphalt has recycled rubber
 - Caltrans allows up to 25% binder replacement with recycled asphalt
- Reduce asphalt needed over the life cycle
 - Improved pavement design methods
 - Better construction quality, more durable materials
- Alternative binders to asphalt?
 - Mostly bio-based, and used as asphalt extenders in blends with RAP
 - Environmental, economic, and societal impacts must be determined


Strategies to Improve Sustainability of Concrete Pavement Materials & Construction

- Reduce cement and cementitious content in concrete
 - Context sensitive
 - Current Caltrans specifications
 - 70% portland cement
 - 25% allow various options for cement replacement
 - 5% inter-ground limestone
- Reduce concrete and maintenance needed over the life cycle
 - Improved pavement design methods
 - Better construction quality
 - More durable materials
- Reduce energy and GHGs during cement and concrete production
- Increase use of recycled and marginal materials as aggregate

Local Government Practices for Asphalt and Concrete Materials & Construction


- Many local agencies are lacking:
 - Asphalt compaction specifications
 - Use of
 - Rubberized asphalt
 - Recycled asphalt pavement in new hot mix
 - Warm mix additives
 - Use of lower cement contents in concrete
 - Use of cement blended with fly ash, slag and/or limestone to reduce GHG content
 - Thinner concrete pavement designs
- Lack of sufficient information and confidence to allay risk aversion

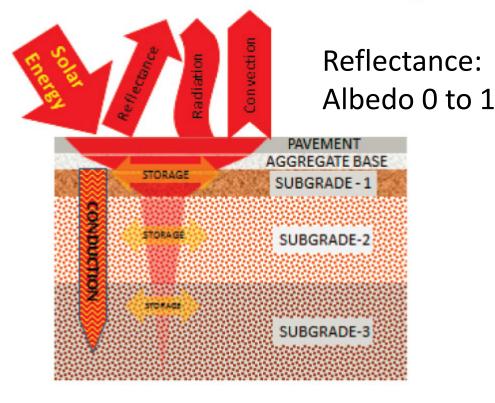
Use Stage: Pavement surface characteristics

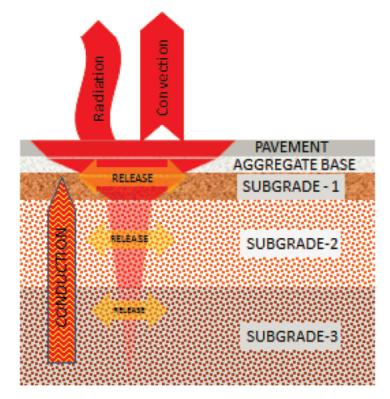
Pavement Rolling Resistance

- Roughness
 - Measured with International Roughness Index (IRI)
 - Dissipates energy through suspension and tire distortion
- Macrotexture
 - Measured with Mean Texture Depth or Profile Depth (MPD)
 - Dissipates energy through tire tread distortion
- Deflection
 - Dissipates energy through pavement structure distortion
 - Current UCPRC/MIT/Mich St U/Oregon St U study to be finished in 2017

Tradeoffs of Keeping Pavements Smooth

- Keeping pavements smooth requires maintenance
 - More than current
 - Increased environmental impact from maintenance
 - Still less than rehabilitation and reconstruction
- Big fuel savings only on highest traffic routes
 - Doesn't mean let low volume roads go bad
 - Use LCA and LCCA to determine tradeoff of \$/GHG improvement and cutoff where no benefit
- M&R doesn't give full benefit if don't get smoothness from construction
 - Smoothness specifications so not "born rough"


Preliminary optimal roughness trigger by traffic level on Caltrans network


Traffic group	Daily PCE of lane- segments range	Total lane- miles	Percentile of lane- mile	Optimal IRI triggering value (m/km, inch/mile in parentheses)	Annualized CO ₂ -e reductions (MMT)*	Modified total cost- effectiveness (\$/tCO ₂ -e)
1	<2,517	12,068	<25		0	N/A
2	2,517 to 11,704	12,068	25~50	2.8 (177)	0.14	1,169
3	11,704 to 19,108	4,827	50~60	2.0 (127)	0.10	857
4	19,108 to 33,908	4,827	60~70	2.0 (127)	0.13	503
5	33,908 to 64,656	4,827	70~80	1.6 (101)	0.26	516
6	64,656 to 95,184	4,827	80~90	1.6 (101)	0.30	259
7	>95,184	4,827	90~100	1.6 (101)	0.45	104
Total					1.38	416

Urban Heat Island: Thermal Model

- Pavement is 25 to 40% of urban surfaces
- Tradeoffs: change to high reflection materials and construction vs. building heating/cooling

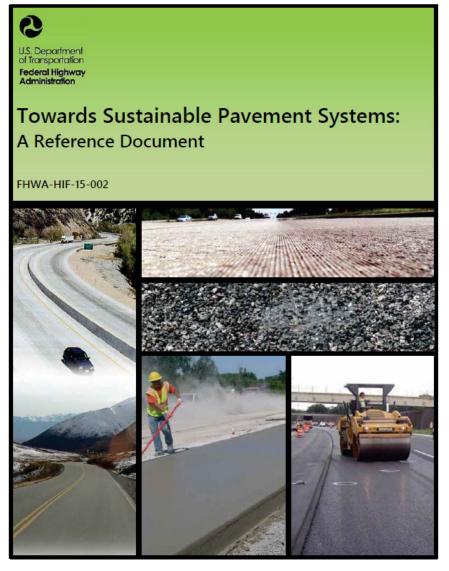
Basic Thermal Model - Day Basic Thermal Model - Night

From NCPTC/NCAT 2013

LBNL/USC/UCPRC Study Currently Recently Completed: Life Cycle Assessment and Co-benefits of Cool Pavements

- Sponsored by CARB, Caltrans in response to AB 296
- Modeled 50 year GHG emissions
 - Change of urban pavements to higher reflectivity materials
 - Change of urban temperatures due to pavement albedo across the year
 - Change in building energy use due to temperature change
- Preliminary conclusions (currently being critically reviewed)
 - Much larger increase of GHG from changing materials than reduction from building energy savings
- Report to be published in Fall 2016

Pavement sustainability recommendations


- Most effective strategies to reduce GHG from pavement depend on traffic levels
 - Low traffic: materials and construction
 - Improvement in design and construction
 - Recycled materials
 - Timely pavement preservation
 - Local government offers big opportunities for improvement
 - Highest traffic: pavement/vehicle interaction
 - Smoothness most important
 - Heat island: proceed cautiously until LCA results verified

Pavement sustainability recommendations

- Pavement management systems
 - Can be used to integrate cost (LCCA) and environmental benefit (LCA) calculations at network level
- Use LCA and LCCA to evaluate policies
 - Quantify benefits and identify unintended consequences before implementing legislation or regulations
- Need better environmental data
 - Consider mandating Environmental Product Declarations (EPD) for all pavement materials
 - FHWA/Caltrans/TRB workshops on EPDs in fall 2017

FHWA Towards Sustainable Pavements Reference Document

- State of the knowledge
- Search on "FHWA pavement sustainability"
- Organized around LCA
- Also at web site
 - Tech briefs
 - Literature database
- Coming soon: Pavement LCA Guidelines

Current and Future Work at UCPRC

• Caltrans projects:

- LCA for pavements
- Application of LCA to Caltrans materials, design, use stage questions
- Recycled materials, thin concrete, rubberized asphalt, long life pavement
- Smoothness research and measurement certification
- Pavements for bicycling
- Freight damage and freight route choice based on roughness
- Support for pavement management system and life cycle cost analysis
- FHWA and FAA
 - LCA for pavement (both)
 - Pavement sustainability task group new 5 year contract (FHWA)
 - Recycled materials (FAA)
- NCST
 - White paper and policy brief on pavement LCA
 - Recycled asphalt pavement

Questions?

jtharvey@ucdavis.edu